

MUFFAKHAM JAH COLLEGE OF ENGINEERING
AND TECHNOLOGY

(Affliated to Osmania University)
Banjara Hills, Hyderabad, Telangana

INFORMATION TECHNOLOGY DEPARTMENT

OOSD AND CC LAB MANUAL

OOSD AND CC LAB MANUAL

TABLE OF CONTENTS
S.No

.
CONTENTS PAGE No.

1. Institute Vision I

2. Institute Mission I

3. Department Vision II

4. Department Mission II

5. PEOs III

6. POs IV

7. PSOs V

8. Introduction to OOSD & CC laboratory VI

Programs

OBJECT ORIENTED SYSTEM DEVELOPMENT

1. Use Case Diagram 1

2. Activity Diagram 4

3. Class Diagram 6

4. Object Diagram 9

5. Interaction Diagram 10

6. State Chart Diagram 14

7. Component Diagram 17

8. Deployment Diagram 18

9. Forward Engineering 19

OOSD AND CC LAB MANUAL

10. Reverse Engineering 20

COMPILER CONSTRUCTION

11. Program 1: Basic Lex program to echo the given input. 21

12. Program 2: Lex program to prepend the line numbers to each line of a file. 22

13. Program 3: Lex Program to count number of identifiers 24

14. Program 4: Lex Program to count number of spaces, lines, words and

characters.

25

15. Program 5: Program to implement scanner using Lex. 27

16. Program 6: Program to implement LALR parser using YACC. 28

17. Program 7: C program to implement recursive descent parser. 30

18. Program 8: C program to find First elements of a grammar. 32

19. Program 9: C program to find Follow elements of a grammar. 34

20. Program 10: C program for code generation. 36

21. Program 11: C program for code optimization. 37

22. Program 12: Code generation for if-statement 38

23. Program 13: Code generation for while-statement 42

TESTING

24. Program 14: Identification of test cases and finding defects in the
application

44

25. Program 15: Data Verification, Image Verification 47

26. Program 16: Data Driven Actions using RFT 51

27. Program 17: Requirements management using RQM 54

 Annexure – I : OU prescribed programs for Java Programming Laboratory 58

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET I

1. Vision of the Institution:

To be part of universal human quest for development and progress by

contributing high calibre, ethical and socially responsible engineers who

meet the global challenge of building modern society in harmony with

nature.

2. Mission of the Institution

 To attain excellence in imparting technical education from the

undergraduate through doctorate levels by adopting coherent and

judiciously coordinated curricular and co-curricular programs

 To foster partnership with industry and government agencies through

collaborative research and consultancy

 To nurture and strengthen auxiliary soft skills for overall development

and improved employability in a multi-cultural work space

 To develop scientific temper and spirit of enquiry in order to harness the

latent innovative talents

 To develop constructive attitude in students towards the task of nation

building and empower them to become future leaders

 To nourish the entrepreneurial instincts of the students and hone their

business acumen.

 To involve the students and the faculty in solving local community

problems through economical and sustainable solutions.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET II

3. Department Vision

Fostering a bright technological future by enabling the students to

function as leaders in software industry and serve as means of

transformation to empower society through ITeS.

4. Department Mission

To create an ambience of academic excellence through state of art

infrastructure and learner-centric pedagogy leading to employability in

multi-disciplinary fields.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET III

5. Programme Education Objectives

1. Graduates will demonstrate technical competence and leadership in their

chosen fields of employment by identifying, formulating, analyzing and

creating efficient IT solutions.

2. Graduates will communicate effectively as individuals or team members

and be successful in varied working environment.

3. Graduates will demonstrate lifelong learning through continuing

education and professional development.

4. Graduates will be successful in providing viable and sustainable solutions

within societal, professional, environmental and ethical context

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET IV

6. Programme Outcomes
1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals and an engineering specialization to the solution of

complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and interpretation
of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modeling to
complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge
to assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to
comprehend and write effective reports and design documentation, make effective
presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of
the engineering and management principles and apply these to one’s own work, as
a member and leader in a team, to manage projects and in multidisciplinary
environments.

12. Lifelong learning: Recognize the need for, and have the preparation and ability to
engage in independent and lifelong learning in the broadest context of
technological change.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET V

7. Programme Specific Outcomes:

PSO1: The IT graduates will work as software engineers for providing

solutions to real world problems using structured and object oriented

programming languages and open source software.

PSO2: The IT graduates will work as System engineer, Software analyst and

Tester for IT and ITes.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET VI

8. Introduction TO OOSD and CC Laboratory

Laboratory Objective

Upon successful completion of this Lab students will be able to:

1. Create models which visualize, specify, construct and document the artifacts of a

software-intensive system.

2. Model systems from concept to executable artifacts using object oriented

techniques.

3. Perform forward and reverse engineering.

4. Understand the working of lex and yacc compiler for debugging of programs.

2. Understand and define the role of lexical analyzer and use of regular expressions.

3. Develop programs for solving parsing problems.

4. Convert the high level language program to target language

5. Learn how to write programs that execute faster.

6. Understand and identify various software testing problems, and solve these

problems by using the testing tool.

7. Design and conduct a software test process for a software testing project.

OBJECT ORIENTED SYSTEM DEVELOPMENT

UNIFIED MODELING LANGUAGE (UML):

1.Model
 A model is a simplification of reality.
 A model provides the blueprints of a system.
 A model may be structural, emphasizing the organization of the system, or it may be
behavioral, emphasizing the dynamics of the system.
 We build models so that we can better understand the system we are developing.
 We build models of complex systems because we cannot comprehend such a
system in its entirety.

Through modeling, we achieve four aims.
 Models help us to visualize a system as it is or as we want it to be.
 Models permit us to specify the structure or behavior of a system.
 Models give us a template that guides us in constructing as system.
 Models document the decisions we have made

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET VII

2. Principles of Modeling
 The choice of what models to create has a profound influence on how a
problem is attacked and how a solution is shaped
 Every model may be expressed at different levels of precision
 The best models are connected to reality
 No single model is sufficient. Every nontrivial system is best approached
through a small set of nearly independent models

UML is a graphical notation used to visualize, specify, construct and document the artifact of
software intensive. UML is appropriate for modeling systems ranging from Enterprise
Information Systems to Distributed Web-based Application and even to Hard Real-time
Embedded systems. UML effectively starts with forming a conceptual modeling of the
language.
There are 2 types of diagrams. They are

1. Static Diagrams
a) Use case diagrams
b) Class diagrams
c) Object diagrams
d) Component diagrams
e) Deployment diagrams

2. Dynamic diagrams
a) Interaction diagrams

i) Sequence diagrams
ii) Collaboration diagrams

b) State machine diagrams
c) Activity diagrams

Applications of UML:

 UML is intended primarily for software intensive systems. It has been used effectively for
such domains as

1. Enterprise Information Systems
2. Banking and Financial Services
3. Telecommunications
4. Transportation
5. Defense and Aerospace
6. Retail
7. Medical Electronics
8. Scientific
9. Distributed Web-based Services

Basic building blocks of UML:

 The building blocks of UML can be categorized as
1. Things
2. Relationships and
3. Diagrams

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET VIII

 Things:- Things are the most important building blocks of UML. Things can be
a) Structural
b) Behavioral
c) Grouping
d) Annotational

a) Structural Things: They define the static part of the model. They represent physical and

conceptual elements.
 Following are the structural things –
 1. Class: - It describes a set of objects that share the same attributes, operations,
relationships and semantics.

Class name
Attributes

Operations

 2.Object: - It is a collection of operations that specifies a service of a class or a
component.

 3. Collaboration: - It defines interaction between elements.

4. Use case: - They are used to identify different use case components of a
particular software project. It is used to model the operation.

5. Component: - It is a physical and replaceable part that confirms to and
provides realization of set of interfaces.

6. Node: - A physical resource that exists in runtime and represent a
computational resource.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET IX

7. Actor: - The outside entity that communicates with a system. Typically a
person playing a role on an external device.

b) Behavioral Things: They consist of dynamic parts of the UML model.

 The following are behavioral things –
1. Interaction: - It is defined as a behavior that consists of a group of message

exchanged among elements to accomplish a specific task.
 message

2. State machine: - It is useful when the states of an object in its life cycle. It
defines the sequence of states and object goes through in response to events.

c) Grouping Things: They can be defined as a mechanism to group elements of UML
model together. There is only one grouping thing available i.e., Package.
 Package is used for gathering structural and behavioral things.

d) Annotational Things: - They can be defined as a mechanism to capture remarks,

description and comments of UML model elements. There is only one annotational
thing available i.e., Note.
 Note is used to render comments, constraints and so on of a UML element.

Relationships: -

The relationship is another most important building block of UML. They show how
elements are associated with each other and their association describes the functionality
of application.
There are 5 types of relationships. They are

1. Dependency: It is a relationship between two things in which change in one
element also affects another.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET X

2. Generalization: It can be defined as a relationship which connects a specialized

element with a generalized element. It basically describes inheritance relationship
in the object. It is a ‘is_a ‘ hierarchy.

3. Realization: It can be defined as a relationship in which two elements are
connected. One element describes some responsibility which is not implemented
and the other one implement then. This relationship exists in case of interfaces.

4. Association: It is a set of links that connects elements of an UML model.

UML Diagrams: -

1. Use case diagram
2. Activity diagram
3. Class diagram
4. Interaction diagrams

i) Sequence diagram
ii) Collaboration diagram

5. State machine diagram
6. Object diagram
7. Component diagram
8. Deployment diagram

Rational Software Architect(RSA) is a modeling and development environment that uses
the Unified Modeling Language (UML) for designing architecture for C++ and Java EE
(JEE) applications and web services. Rational Software Architect is built on
the Eclipse open-source software framework and includes capabilities focused on
architectural code analysis, C++, and model-driven development (MDD) with the UML for
creating applications and web services.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XI

COMPILER CONSRTUCTION

Translator

A translator is a program that takes as input a program written in one language and produces

as output a program in another language. Beside program translation, the translator performs

another very important role, the error-detection. Any violation of d HLL specification would

be detected and reported to the programmers. Important role of translator are:

1. Translating the HLL program input into an equivalent ML program.

2. Providing diagnostic messages wherever the programmer violates specification of

the HLL.

Type of translators

1. Interpreter

2. Compiler

3. Preprocessor

Compiler

Compiler is a translator program that translates a program written in (HLL)source

program and translate it into an equivalent program in (MLL) the target program. As

an important part of a compiler is error showing to the programmer.

Source Program target program

 Error message

Executing a program written n HLL programming language is basically of two parts. the

source program must first be compiled translated into a object program. Then the results

object program is loaded into a memory executed.

 Source program object program

 Object program input object program output

Compiler

 Compiler

 Obj pgm

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XII

I. Structure of the compilers
Compilation process is partitioned into no-of-sub processes called ‘phases’.

Lexical Analysis

Lexical Analyzer or Scanners reads the source program one character at a time,

carving the source program into a sequence of atomic units called tokens.

Syntax Analysis

The second stage of translation is called Syntax analysis or parsing. In this phase

expressions, statements, declarations etc… are identified by using the results of

lexical analysis. Syntax analysis is aided by using techniques based on formal

grammar of the programming language.

Intermediate Code Generations

An intermediate representation of the final machine language code is produced. This

phase bridges the analysis and synthesis phases of translation.

Code Optimization

This is optional phase described to improve the intermediate code so that the output

runs faster and takes less space.

Code Generation

The last phase of translation is code generation. A number of optimizations to reduce

the length of machine language program are carried out during this phase. The output

of the code generator is the machine language program of the specified computer.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XIII

Table Management

This is the portion to keep the names used by the program and records essential

information about each. The data structure used to record this information called a

‘Symbol Table’.

Error Handlers

It is invoked when a flaw error in the source program is detected.

Passes

One (or) more phases one combined into a module called a pass.

Single-pass Compiler

All the phases are combined into a single

Multi-pass Compiler

More than one phase are combined into a number of groups called multi-pass.

(Multi pass compiler can be made to use less space than single pass compiler.).

II. Lexical Analyzer
Lexical analyzer is the first phase of compiler which takes the source program as input and

produces the stream of tokens as output. Lexhelps write programs whose control flowis

directed by instances of regular expressionsintheinputstream.It is well suited for editor-script

type transformations and for segmenting input in preparation for a parsing routine.

Lexsource is a table of regular expressions and corresponding programfragments. The table is

translated to a programwhich reads an input stream, copying itto an output stream and

partitioning the input intostrings which match the given expressions.As each such string is

recognized the corresponding programfragment isexecuted. The recognition of the

expressions is performed by a deterministic finite automaton generated by Lex. The

programfragments written by the user are executed in the order in which

thecorrespondingregular expressions occur in the input stream.

Thelexical analysis programs written with Lex accept ambiguous specifications and choose

the longest match possible at each input point. If necessary, substantial lookahead is

performed on the input, but the input streamwill be backed up tothe end of the current

partition, sothat the user has general freedomto manipulate it.

Lexcan generate analyzers in either C orRatfor, a language which can be translated

automatically to portable Fortran. It is available on the PDP-11 UNIX, Honeywell GCOS,

and IBM OS systems.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XIV

Lexis a programgenerator designed for lexical processing of character input streams. It

accepts a high-level, problemoriented specification for character string matching, and

produces a programin a general purpose language which recognizes regular expressions. The

regular expressions are specifiedby the user in the source specifications given to Lex. The

Lex written code recognizes these expressions in an input streamand partitions the input

streaminto strings matching the expressions. At the boundaries between strings

programsections provided by the user are executed. The Lex source file associates the regular

expressions and the programfragments. As each expression appears in the input to the

programwritten by Lex, the corresponding fragment is executed.

Lex Source

Thegeneral format of Lex source is:
{definitions}

%%

{rules}

%%

{user subroutines}

%%

Where the definitions andthe user subroutines are often omitted. The second %%

isoptional,but the first is required to mark the beginning ofthe rules. The absolute minimum

Lex programis thus(nodefinitions, no rules) which translates into a programwhich

copiestheinputtotheoutputunchanged.

Inthe outline of Lex programs shown above, the rules represent the user's control decisions;

they are a table, in which the leftcolumn contains regular expressions and the right column

contains actions,programfragments to be executed when the expressions are recognized.

Thus an individual rule might appear
Integer printf("found keyword INT");

tolook for the string integer in the input streamand print the message ``found

keywordINT''whenever it appears. In this example the host procedural language is C and the

C library function printf is used to print the string. The end of the expression is indicated by

the first blank or tab character. If the action ismerely a single C expression, it can just be

given on the right side ofthe line; if it is compound, or takes more than a line, it should be

enclosed in braces.

LexActions

Whenan expression written as above ismatched, Lex executes the corresponding action. This

section describes some features of Lex which aid in writing actions. Note that there is a

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XV

default action, which consistsof copying the input tothe output. This is performed on all

strings not otherwise matched. Thus the Lex user who wishes to absorb the entire input,

without producing any output, must provide rules to match everything. When Lex is being

used with Yacc, this is the normal situation. One may consider that actions are what

isdoneinstead of copying the input to the output; thus, in general, a rule which merely copies

can be omitted. Also, a character combination which isomitted fromthe rules and which

appears as input is likely to be printed on the output, thus calling attention to the gap in the

rules.

LexSourceDefinitions

Definitionsintended for Lex are given before the first %% delimiter. Any line in this section

not contained between %{ and %}, and beginning in column 1, is assumed to define Lex

substitution strings. The format ofsuch lines is name translation and it causes the string given

as a translation to be associated with the name. The name and translation must be separated

by at least one blank or tab, and the name must begin with a letter.The translation can then be

called out by the {name}syntax in a rule. Using {D} for the digits and {E} for an exponent

field, for example, might abbreviate rules to recognize numbers:
D [0-9]

E [DEde][-+]?{D}+

%%

{D}+ printf("integer");

{D}+"."{D}*({E})? |

{D}*"."{D}+({E})? |

{D}+{E}

Notethe first two rules for real numbers; both require a decimal point and contain an

optionalexponent field, but thefirst requires at least one digit before the decimal point and

the second requires at leastone digit after the decimal point. To correctly handle the

problemposed by a Fortran expression such as 35.EQ.I, which does not contain a real

number, a context-sensitive rule suchas
[0-9]+/"."EQ printf("integer");

couldbe used in addition to the normal rule for integers.

Thedefinitions section may also contain other commands, including the selection ofa host

language, a character set table, a list of start conditions, oradjustmentsto the default size

ofarrays within Lexitself for larger source programs

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XVI

Lex source program lex.yy.c

lex.l

 lex.yy.c a.out

 input stream stream of tokens

First, a specification of a lexical analyzer is prepared by creating a program lex.1 in

theLex language. Then, lex.l is run through the Lex compiler to produce a C

program lex.yy.c. The program lex.yy.c consists of a tabular representation of a

transition diagram constructed from the regular expressions of lex.l together with a

standard routine that uses the table to recognize lexemes. The actions associated

with regular expressions in lex.1 are pieces of C code and are carried over directly

to lex.yy.c. Finally, lex.yy.c is run through the C compiler to produce an object

program a.oat, which is the lexical analyzer that transforms an input stream into a

sequence of tokens.

III. YACC

YACC is one of the compiler construction Tools which will produce a parser for a given

grammar.

A YACC source program is structurally similar to a LEX one.

declarations

%%

rules

%%

routines

 The declaration section may be empty. Moreover, if the routines section is omitted, the

second %% mark may be omitted also.

 Blanks, tabs, and newlines are ignored except that they may not appear in names.

The declaration section may contain the following items.

 Declarations of tokens. Yacc requires token names to be declared as such using the

keyword %token.

 Declaration of the start symbol using the keyword %start

 C declarations: included files, global variables, types.

Lex compiler

C compiler

a.out

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XVII

 C code between %{ and %}.

Rules Section

A rule has the form:

nonterminal : sentential form

 | sentential form

 | sentential form

 ;

Actions may be associated with rules and are executed when the associated sentential form is

matched.

LEX-YACC Interaction

yyparse() calls yylex() when it needs a new token.

LEX YACC

return(TOKEN) %token TOKEN

 TOKEN is used in production

The external variable yylval

 is used in a LEX source program to return values of lexemes,

 yylval is assumed to be integer if you take no other action.

YACC (Yet Another Compiler Compiler) is a program designed to compile a LALR(1)

grammar and to produce the source code of the syntactic analyzer of the language produced

by this grammar.

The LALR (Look Ahead-LR) parsing method is between SLR and Canonical LR both

in terms of power of parsing grammars and ease of implementation. This method is

often used in practice because the tables obtained by it are considerably smaller than the

Canonical LR tables, yet most common syntactic constructs of programming languages can

be expressed conveniently by an LALR grammar. The same is almost true for SLR

grammars, but there are a few constructs that can not be handled by SLR techniques.

IV.Code Generation

Code Generation is the final activity of compiler. Code generation phase creates assembly

language or machine language statements which will perform the operations specified by the

source program when they run.

Properties of this phase are:

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XVIII

1. Correctness: It should produce a correct code and do not alter the purpose of

source code.

2. High quality: it should produce a high quality code.

3. Efficient use of recourses of the target machine

4. Quick code generation.

This is optional phase described to improve the intermediate code so that the output faster

and takes less space. Its output is another intermediate code program that does the same job

as the original, but in a way that saves time and / or spaces.

1. Local Optimization

There are local transformations that can be applied to a program to make an improvement.

For example,

 If A > B goto L2

 Goto L3

 L2 :

 This can be replaced by a single statement

 If A < B goto L3

Another important local optimization is the elimination of common sub-expressions

 A := B + C + D

 E := B + C + F

Might be evaluated as

 T1 := B + C

 A := T1 + D

 E := T1 + F

Take this advantage of the common sub-expressions B + C.

2. Loop Optimization

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XIX

Another important source of optimization concerns about increasing the speed of loops. A

typical loop improvement is to move a computation that produces the same result each time

around the loop to a point, in the program just before the loop is entered.

In this we use gcc compiler for compiling the program. Why because in cc compiler it is not

possible to create assembly code file. To create assembly file we use –S option, through this

we generate assembly file named as filename.s. To optimize this assembly code we use -O2

option

V. System Requirement

HardwareConfiguration

Processor PIV(1.8Ghz)

RAM 256MB

HDD 40GB FDD,

 1.44 MB

Software Configuration

Operating System Windows XP

Lexand Yacc tools (A Linux Utility)

Language: C/C++

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XX

SOFTWARE TESTING

Software testing is a process of executing a program or application with the intent of finding

the software bugs. It can also be stated as the process of validating and verifying that

a software program or application or product.

Software testing involves the execution of a software component or system component to

evaluate one or more properties of interest. In general, these properties indicate the extent to

which the component or system under test:

 meets the requirements that guided its design and development,

 responds correctly to all kinds of inputs,

 performs its functions within an acceptable time,

 is sufficiently usable,

 can be installed and run in its intended environments, and

 achieves the general result its stakeholders desire.

Software Testing Tools

The following tools can be used for automation testing:

 HP Quick Test Professional

 Selenium

 IBM Rational Functional Tester

 SilkTest

 TestComplete

 Testing Anywhere

 WinRunner

 LoadRunner

 Visual Studio Test Professional

 WATIR

I. Software Testing Methods
Black-Box Testing

The technique of testing without having any knowledge of the interior workings of

the application is called black-box testing. The tester is oblivious to the system

architecture and does not have access to the source code. Typically, while performing

a black-box test, a tester will interact with the system's user interface by providing

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XXI

inputs and examining outputs without knowing how and where the inputs are worked

upon.

White-Box Testing

White-box testing is the detailed investigation of internal logic and structure of the

code. White-box testing is also called glass testing or open-box testing. In order to

perform white-box testing on an application, a tester needs to know the internal

workings of the code.

The tester needs to have a look inside the source code and find out which unit/chunk

of the code is behaving inappropriately.

Grey-Box Testing

Grey-box testing is a technique to test the application with having a limited

knowledge of the internal workings of an application. In software testing, the phrase

the more you know, the better carries a lot of weight while testing an application.

Mastering the domain of a system always gives the tester an edge over someone with

limited domain knowledge. Unlike black-box testing, where the tester only tests the

application's user interface; in grey-box testing, the tester has access to design documents

and the database. Having this knowledge, a tester can prepare better test data and test

scenarios while making a test plan.

II.Software Testing Levels
Levels of testing include different methodologies that can be used while conducting

software testing. The main levels of software testing are:

 Functional Testing

 Non-functional Testing

Functional Testing

This is a type of black-box testing that is based on the specifications of the software that is

to be tested. The application is tested by providing input and then the results are examined

that need to conform to the functionality it was intended for. Functional testing of

software is conducted on a complete, integrated system to evaluate the system's

compliance with its specified requirements.

Unit Testing

This type of testing is performed by developers before the setup is handed over to the

testing team to formally execute the test cases. Unit testing is performed by the respective

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XXII

developers on the individual units of source code assigned areas. The developers use test

data that is different from the test data of the quality assurance team.

The goal of unit testing is to isolate each part of the program and show that individual

parts are correct in terms of requirements and functionality.

Integration Testing

Integration testing is defined as the testing of combined parts of an application to

determine if they function correctly. Integration testing can be done in two ways: Bottom-

up integration testing and Top-down integration testing.

System Testing

System testing tests the system as a whole. Once all the components are integrated, the

application as a whole is tested rigorously to see that it meets the specified Quality

Standards. This type of testing is performed by a specialized testing team.

Regression Testing

Whenever a change in a software application is made, it is quite possible that other areas

within the application have been affected by this change. Regression testing is performed

to verify that a fixed bug hasn't resulted in another functionality or business rule violation.

The intent of regression testing is to ensure that a change, such as a bug fix should not

result in another fault being uncovered in the application.

Acceptance Testing

This is arguably the most important type of testing, as it is conducted by the Quality

Assurance Team who will gauge whether the application meets the intended specifications

and satisfies the client’s requirement. The QA team will have a set of pre-written

scenarios and test cases that will be used to test the application.

Non-Functional Testing

This section is based upon testing an application from its non-functional attributes. Non-

functional testing involves testing a software from the requirements which are

nonfunctional in nature but important such as performance, security, user interface, etc.

Performance Testing

It is mostly used to identify any bottlenecks or performance issues rather than finding

bugs in software. There are different causes that contribute in lowering the performance of

software:

 Network delay

 Client-side processing

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET XXIII

 Database transaction processing

Load Testing

It is a process of testing the behavior of a software by applying maximum load in terms of

software accessing and manipulating large input data. It can be done at both normal and

peak load conditions. This type of testing identifies the maximum capacity of software

and its behavior at peak time.

Stress Testing

Stress testing includes testing the behavior of a software under abnormal conditions. For

example, it may include taking away some resources or applying a load beyond the actual

load limit.

The aim of stress testing is to test the software by applying the load to the system and

taking over the resources used by the software to identify the breaking point.

III. IBM Rational Functional Tester
IBM Rational Functional Tester is an automated functional testing and regression testing

tool. This software provides automated testing capabilities for functional, regression,

GUI, and data-driven testing. Rational Function Tester supports a range of applications,

such as web-based, .Net, Java, Siebel, SAP, terminal emulator-based applications,

PowerBuilder, Ajax, Adobe Flex, Dojo Toolkit, GEF, Adobe PDF documents, zSeries,

iSeries, and pSeries.

 Storyboard testing: Simplifies test visualization and editing using natural language

and rendered screenshots.

 Automated testing: Enables testers to automate tests resilient to frequent

application user interface changes with ScriptAssure technology.

 Data-driven testing: Lets you perform the same series of test actions with a

varying set of test data.

 Test scripting: Combines a recorder of user actions with multiple customization

options and intelligent script maintenance capabilities.

 Integrations: Integrates with IBM Rational Team Concert and IBM Rational

Quality Manager to provide access to work items and logical or compound SCM

test asset support.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 1

OBJECT ORIENTED SYSTEM DEVELOPMENT LAB
 CASE STUDY FOR ATM SYSTEM

1. USE CASE DIAGRAM

Problem Definition
To draw use case diagram for ATM System.
Problem Description
A use case diagram describes a set of sequences in which each sequence indicates the relation
with outside things. A use case involves the interaction of actor and system. There exist 3 types
of relationships-

1. Association
2. Dependency
3. Generalization

 Use case diagrams can contain
 � Actors – “things” outside the system
 � Use cases – system boundaries identifying what the system should do.

 Use case diagram can be used during analysis to capture the system requirements and to
understand how the system should work. During the design phase, you can use use-case
diagrams to specify the behavior of the system as implemented.

Actor:- An actor represents system users. They help delimit the system requirements and give a
clearer picture of what the system should do. An actor is someone or something that

 Interacts with or uses the system.
 Provides input to and receives information from the system.
 Is external to the system and has no control over the use cases.

Customer (actor)

Actors are discovered by examining,
 Who directly uses the system
 Who is responsible for maintaining the system?
 External hardware used by the system.
 Other systems that need to interact with the system.

Use case: - A use case can be described as a specific way of using the system from users (actors)
perspective. Use case can be characterized as-

 A pattern of behavior the system exhibits.
 A sequence of related transactions performed by an actor and the system.
 Delivering something of value to the actor.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 2

 Note: Use cases often start with a “verb”.

Use cases provide a means to,
 Capture system requirements.
 Communicate with end users and domain experts.
 Test the system.

Every graphical representation has a textual description. The description of each use case is
written in a use case specification. Use Case specification has :

Precondition – which states how and when the use case starts.

Main Flow – which lists the set of actions performed by the use case.

Alternate Flow – which lists the exceptions that are possible during executing the use case.

Post condition – which shows the result after the use case completes successfully.

Use Case Specification For Deposit Use Case

Pre-Condition: Customer must have an account with bank.

Main Flow:

1. Select branch of the bank.

2. Enter 10-digit phone number

3. Confirm the phone number

4. Enter account number

5. Re-enter account number

6.Enter the amount to be deposited.

7.Confirm

Alternate Flow:

1.Entered Phone number may not be registered.

2. Account number may be invalid.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 3

Post-Condition:

On successful completion cash is deposited in the account.

Pseudo code
1. Right click on the model
2. Select Add Diagram – Use case diagram

Use case diagram for ATM System

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 4

2. ACTIVITY DIAGRAM

Problem Definition
To draw activity diagram for ATM System.

Problem Description
An activity diagram is a special case of state diagram. An activity diagram is like a flow Machine
showing the flow a control from one activity to another. An activity diagram is used to model
dynamic aspects of the system.
Activity diagram contains:

1.Activity states and action states
2.Transition
3. Object

Action state:- These are atomic, executable computation which represents the execution of an
action.

Activity state:- They can be decomposed. That is, their activity is represented by other activity
diagrams.
Branching:- In branching, we have one incoming transition and two or more outgoing
transitions.

 Decision
Forking:- It is a process of splitting a single flow of control into multiple flow of controls.
Generally a fork has a single incoming flow of control but multi outgoing flow of control.

Joining:- It is exactly opposite of forking. It generally has multiple incoming flows of control
but single outgoing flow of control.

Swim-lanes:- They represent the columns in the activity diagram to group the related
activities. These are represented in the form of partitioned region.Swim-lanes are helpful when
modeling a business work flow because they can represent organizational units or role with in a
business model. Swim-lanes are very similar to an object because they provide a way to tell
who is performing a certain role.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 5

Pseudo code
1. Right click on the model
2. Select Add Diagram – Activity diagram

Activity diagram with swim lanes for withdraw use case

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 6

3. CLASS DIAGRAM

Problem Definition
To draw class diagram for ATM System.

Problem Description

 Class diagram contains icons representing classes, interfaces and their relationships.

Class:- A class is a set of objects that share a common structure and common behavior (the same
attributes, operations and semantics). A class is a abstraction of real-world items. When these
items exist in the real-world, they are instances of the class and are referred to as objects.

 A class icon is a 3-part box.

Class name
Attributes

Operations

Generalization relationship for classes: It shows that sub classes share the structure or
behavior defined in one or more super classes. Use a generalize relationship to show “is_a”
relationship.

Super class

 Sub class 1 Sub class2

Dependency Relationship: The dependency is a relationship between two model elements in
which change in one element will affect the other model element. Typically in class diagrams, a
dependency relationship indicates that the operations of the client invoke operation of the
supplier.
Cardinality Adornment:- Cardinality specifies how many instances of one class may be
associated with single instance of other class. When you apply a cardinality adornment to a class,
you are indicating number of instances allowed for that class. A relationship, you are indicating
number of links allowed between one instance of a class and the instances of another class.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 7

Valid Values: Value Description

 0..0 zero

0..1 zero or one

0..n zero or more

1..1 one

1..n one or more

n unlimited number

Interface:- An interface specifies the externally visible operations of a class and/or component,
and has no implementation of its own. An interface specifies only a limited part of behavior of
class or a component.

Association relationship: An association provides a pathway of communications. The
communication can be between use cases, actors, classes or interfaces. If two classes are usually
considered independently, the relationship is an association.

Unidirectional Bi directional

 An association is an orthogonal or straight solid line.

Aggregate relationship: Use the aggregate relationship to show a whole or part relationship
between two classes.

The diamond end represents the class which is whole.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 8

Pseudo code
1. Right click on the model
2. Select Add Diagram – Class diagram

Class diagram for ATM System

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 9

4. OBJECT DIAGRAM

Problem Definition
To draw object diagram for ATM System.

Problem Description

Object diagrams model the instances of things contained in the class diagrams. Object diagrams
show a set of objects and their relationships at a point in time. They are used to model the static
design view of a system.

Object diagrams contain:
 Objects
 Links

Pseudo code
1. Right click on the model
2. Select Add Diagram – Object diagram

Object Diagram for ATM System

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 10

5. INTERACTION DIAGRAM

Problem Definition
To draw interaction diagrams for ATM System.

Problem Description

 An interaction is an important sequence of interactions between objects. There are two types of
interaction diagrams,

1. Sequence Diagrams.
2. Collaboration diagrams.

1.Sequence Diagram : A sequence diagram is a graphical view of a scenario that shows object
interaction in a time based sequence, what happens first, what happens next.
Sequence diagrams establish the roles of objects and help provide essential information to
determine class responsibilities and interfaces.
A sequence diagram has two dimensions: vertical placement represents time and horizontal
placement represents different objects.

Link: Objects interact through their links to other objects. A link is an instance of an
association, analogous to an object being instance of a class. A link should exist between two
objects, including class utilities, only if there is a relationship between their corresponding
classes.

Message icons: A message icon represents the communication between objects indicating that
an action will follow. The message icon is a horizontal, solid arrow connecting two lifelines
together.A message icon in a sequence diagram represents exactly one message.

Lifeline: Each object appearing on the sequence diagram contains a dashed vertical line, called
lifeline, which represents the location of an object at a particular point in time. The lifeline also
serves as a place for messages to start and stop and a place for the focus of control to reside.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 11

Lifeline

Message or Event: a message is a communication carried between two objects that trigger an
event. A message is represented in collaboration and sequence diagrams by a message icon
which usually indicates its synchronization.

 Synchronization types that are supported.

1. Synchronous Call
2. Asynchronous Call
3. Asynchronous Signal
4. Create
5. Delete
6. Reply

Message to self: It is a tool that sends a message from one object back to the same object. The
sender of the message is same as the receiver.

Tools:

1. Object

2. Object message

3. Message to self

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 12

4. Return message

5. Destruction marker

Pseudo code
1. Right click on the model
2. Select Add Diagram – Sequence diagram

Sequence Diagram for Withdraw scenario

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 13

2. Collaboration diagram : A collaboration diagram is an interaction diagram that shows the
order of messages that implement an operation or a transaction. Collaboration diagrams show
objects, their links, and their messages. They can also contain simple class instances and class
utility instances. Each collaboration diagram provides a view of the interactions or structural
relationships that occur between objects and object-like entities in the current model.
Collaboration diagrams contain icons representing objects.

Sequence and collaboration diagrams are semantically equivalent as both show the interaction
among objects. From one diagram we can generate another diagram. To generate a collaboration
diagram from sequence diagram, right click on sequence diagram, select - Add Diagram -
communication diagram . Similarly, a sequence diagram can be generated from collaboration
diagram.

Pseudo code
1. Right click on the model
2. Select Add Diagram – Communication diagram

Collaboration Diagram for Withdraw Scenario

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 14

6. STATE MACHINE DIAGRAM

Problem Definition
To draw a state Machine diagram for ATM System.

Problem Description

State Machine diagram: state Machine diagrams model the dynamic behavior of individual
classes or any other kind of object. They show the sequence of states that an object goes through
the events that cause a transition from one state to another and the actions that result from a state
change. A state Machine diagram is typically used to model the discrete stages of an objects
lifetime. A state Machine diagram typically contains one start state and multiple end states.
State :- A state represents a condition or situation during the life of an object during which it
satisfies some condition or waits for an event. Each state represents a cumulative history of its
behavior. States can be shared between state machines. Transitions cannot be shared.

Naming: The name of the state must be unique to its enclosing class,within the state

Actions: Actions on states can occur at one of four times

On entry
On exit
Do
On event

Start state:- A start state (also called an “initial state”) explicitly shows the beginning of the
execution of the state machine on the state Machine diagram or beginning of the workflow on
an activity diagram. Normally, one outgoing transition can be placed from the start state.
However, multiple transitions may be placed on start state, if at least one of them is labeled with
a condition. No incoming transitions are allowed.
The start state icon is a small, filled circle that may contain the name (Begin process).

Begin process
End state:- An end state represents a final or terminal state on an activity or state Machine
diagram..
Transitions can only occur into an end state.
The end state icon is a filled circle inside a slightly larger unfilled circle that may contain the
name (End process).

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 15

 End process
State transition:- A state transition indicates that an action in the source state will perform
certain specified actions and enter the destination state when a specified event occurs or when
certain conditions are satisfied. A state transition is a relationship between two states, two
activities or between an activity or a state. The icon for a state transition is a line with an arrow
head pointing toward the destination state or activity.

We can show one or more state transitions from a state as long as each transition is unique.
Transitions originating from a state cannot have the same event, unless there are conditions on
the event.
Naming: We should label each state transition with the name of at least one event that causes the
state transition. We do not have to use unique labels for the state transitions because the same
event can cause a transition to many different states or activities.

Tools:

1. State

2. Activity

3. Start state

4. End state

5. State transition

6. Transition to self

7. Horizontal synchronization

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 16

8. Vertical synchronization

9. Decision

Pseudo code
1. Right click on the model
 2. Select Add Diagram – State Machine diagram

State Machine diagram for ATM System

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 17

7. COMPONENT DIAGRAM

Problem Definition
To draw a component diagram for ATM System.

Problem Description
Component diagrams provide a physical view of the current model. A component diagram shows
the organizations and dependencies among software components, including source code
component, binary code component, and executable component. These diagrams also show the
externally visible behavior of the component by displaying the interfaces of the components.
Component diagrams contain:

1. Component package
2. Components
3. Interfaces
4. Dependency relationship

Pseudo code
1. Right click on the model
 2. Select Add Diagram – Component diagram

Component Diagram for ATM system

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 18

8. DEPLOYMENT DIAGRAM

Problem Definition
To draw a deployment diagram for ATM System.

Problem Description
A deployment diagram shows processors, devices and connections. Each model contains a single
deployment diagram which shows the connections between nodes.

Node:- A node is a hardware component capable of executing programs. Each node must have a
name, there are no constraints on the node name because nodes denote hardware rather than
software entities.

Pseudo code
1. Right click on the model
 2. Select Add Diagram – Deployment diagram

Deployment diagram for ATM System

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 19

9. FORWARD ENGINEERING

Problem Definition

To perform forward engineering of the class diagram.

Problem Description

Forward Engineering is the process of transforming model into code.

Pseudo code
Following are the steps to generate java code from UML class diagram.

1. Start IBM Rational Software Architect

2. Create a class diagram

3. Go to File Menu

3.1 Select New

3.1.1. Click on Transformation configuration

3.1.2. Provide the file name (e.g., fwd.tc)

3.1.3. Select a transformation

3.1.3. Click UML to Java V1.3

3.1.5. Click next

3.1.6. Select the Source (The model which contains class diagram)

3.1.7. Create a new target container(Java project to hold java code)

3.1.8. Provide the java project name

3.1.9. Click next

3.1.10. Click finish

A transformation configuration file (fwd.tc) is created in the UML project.

4. Right click on fwd.tc

4.1. Click on transform

4.1.2. Click on UML to Java V1.3

5. Java code for the model is generated.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 20

10. REVERSE ENGINEERING

Problem Definition

To perform Reverse Engineering.

Problem Description
Reverse Engineering is the process of transforming code to UML model.

Pseudo code
Following are the steps to generate UML model from java code.

1. Start IBM Rational Software Architect

2. Go to file

2.1 New

2.1.1 Click on Transformation configuration

2.1.2. Provide the file name (e.g., rev.tc)

2.1.3. Select a transformation

2.1.4 Click Java to UML.

2.1.5. Click next

2.1.6. Select the Source (java project)

2.1.7. Select a target container (UML model to hold the class diagram)

2.1.8. Click next

2.1.9. Click Finish

A transformation configuration file (rev.tc) is created in the Java project.

3. Right click on rev.tc

3.1. Click on transform

3.1.2. Click on Java to UML

4. The Classes and interfaces present in java project will be listed in UML model.

5. Drag and drop from the model the graphical representation of classes and interfaces onto the
class diagram window.

6. UML class diagram is created with appropriate relationships.Some relationships may not be
reflected in the class diagram as there is loss of information during reverse engineering.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 21

COMPILER CONSTRUCTION PROGRAMS

Program 1

Basic Lex Program

Problem Definition
To generate a lex Program to echo the given input.

Problem Description
During the first phase the compiler reads the input and converts strings in the source to

tokens. With regular expressions we can specify patterns to lex so it can generate code

that will allow it to scan and match strings in the input.

In this program we simply print the matched string rather than return a token

value.
Pseudo code
1. Start the program by skipping the declaration section.
2. The rules section will be left empty to match the whole string.
3. In the auxillary routines section specify the main function which includes yylex()

which is an entry point to the lex.
4. Define yywrap() to perform wrapping of the input stream.

Problem Validation
Execution Steps

Lex prog. l
c lex.yy.c
. /a.out
Input

Hello wor ld

Output

Hello wor ld

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 22

Program 2

Problem Definition
To generate a lex Program to prepend line numbers to each line of a file.

Problem Description
During the first phase the compiler reads the input and converts strings in the source to

tokens. With regular expressions we can specify patterns to lex so it can generate code

that will allow it to scan and match strings in the input.

In this program we match the beginning of the string and add line number to

every line in the program.The lex tool constructs a Finite state machine using the

provided regular expression that matches the beginning of every line.
Pseudo code
1. Start the program by declaring the variable lineno in the declaration section.

2. In the rules section define the regular expression ^(.*)\n to match the beginning of the

line.

3. In the auxillary routines section specify the main function which includes yylex()

which is an entry point to the lex.

4. Open a file for reading in the main.

5. Define yywrap() to perform wrapping of the input stream.

Problem Validation
Execution Steps

Lex prog. l file1.c

c lex.yy.c

. /a.outInput

#include<stdio.h>

main()

{

 printf(“hello world\n”);

 }

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 23

Output

1 #include<stdio.h>

2 main()

3 {

4 printf(“hello world\n”);

5 }

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 24

Program 3
Problem Definition
Lex Program to count the number of Identifiers.
Problem Description
During the first phase the compiler reads the input and converts strings in the source to

tokens. With regular expressions we can specify patterns to lex so it can generate code

that will allow it to scan and match strings in the input.

In this program we take a file and count the identifiers present in it using regular

expression for matching identifier. The lex tool constructs a Finite state machine using

the provided regular expression that matches all the identifiers.
Pseudo code
1. Start the program by declaring the variable count in the declare section.

2. Declare digit and letter using the regular expressions [0-9] and [A-Za-z].

3. In the rules section define the regular expression that matches an identifier

{letter}({letter}|{digit})*.

4. Increment the count for every matched string.

5. In main function,

i. open a file for reading.

ii. Call lex using yylex(),

iii. print the value of count,

iv. close the file opened.

6. Write yywrap() function.

Problem Validation
Execution Steps

lex iden.l

cc lex.yy.c

./a.out hello.c

Input

welcome to the lab

Output

The numbers of identifiers are:4

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 25

Program 4

Problem Definition
Lex Program to count number of spaces, lines, words and characters.
Problem Description
During the first phase the compiler reads the input and converts strings in the source to

tokens. With regular expressions we can specify patterns to lex so it can generate code

that will allow it to scan and match strings in the input.

In this program we take a file and count the spaces, lines, words and characters

present in it using regular expressions. The lex tool constructs a Finite state machine

using the provided regular expressions that matches the words ,lines and spaces.
Pseudo code
1. Start the program by declaring variable c,w,l,s and initializing them to zero.

2. In rules section write the regular expressions for counting words,characters,lines and

spaces as [^ \t\n]+, c+=yyleng, [\n], [\t]+ respectively.

3. In main,

i. open a file for reading,

ii. call lex using yylex()

iii. print the count of characters, words, lines and spaces

iv. close the file after reading.

4. Define yywrap() function.

Problem Validation
Execution Steps

lex iden.l

cc lex.yy.c

./a.out hello.c

Input

hello.c

welcome to the lab

hello world

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 26

Output

Number of characters are 25

Number of words are 6

Number of lines are 2

Number of spaces are 4

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 27

Program 5
Problem Definition
Program to implementscanner using Lex.
Problem Description
During the first phase the compiler reads the input and converts strings in the source to

tokens. With regular expressions we can specify patterns to lex so it can generate code

that will allow it to scan and match strings in the input. Each pattern in the input to lex

has an associated action. Typically an action returns a token that represents the matched

string for subsequent use by the parser.
Pseudo code
1. Start the program by declaring the regular expressions for digit, letter, number,

identifier as [0-9], [A-Za-z], {digit}+, {letter}({letter}|{digit})* respectively in declare

section

2. In rules section, for every regular expression defined above call the display function.

3. In main, invoke lexer using yylex() command.

4. Call yywrap() function to return 1.

5. In display function, using switch construct call different cases for the regular

expressions defined in the program.

Problem Validation
Execution Steps

Lex scanner. l

cc lex.yy.c

. /a.out

Input

i. Main

ii. Hello

iii. 45

Output

i. Keyword

ii. Identifier

iii. Number

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 28

Program 6

Problem Definition
Program to implementLALRparser usingYACC.
Problem Description
Yacc (Yet another compiler compiler) is a computer program for the Unix operating system.

It is a LALR parser generator, generating a parser, the part of a compiler that tries to

make syntactic sense of thesource code, specifically a LALR parser, based on an analytic

grammar written in it. Yacc produces only a parser, for full syntactic analysis this

requires an external lexical analyzer to perform the first tokenization stage (word

analysis), which is then followed by the parsing stage.

Pseudo code
The program contains 2 files lalr.l and lalr.y

 Lalr.y

1. Start the program by declaring a token num using %token command.

2. In the rules section give the rules of the grammar for implementing a simple

calculator that performs addition and multiplication using stack

3. In main, invoke parser using yyparse().

4. Define yyerror() function to catch the errors.

Lalr.l

1. In the declare section, include “y.tab.h” header file and yylval generated by lalr.y file.

2. In the rules section, give the regular expression for a number and store itsinteger

value in yylval.

3. Everything else should be stored as it is by matching them with a dot.

4. Call yywrap() function to return 1;

Problem Validation
Execution Steps

Lex lalr.l

cc lex.yy.c

yacc lalr.y

cc lex.yy.c –d y.tab.c

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 29

./a.out

Input

i. 2+3

ii. 2++3

Output

i. 5

ii. ERROR

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 30

Program 7

Problem Definition
C program to implementrecursivedescentparser.
Problem Description
One of the most straightforward forms of parsing is recursive descent parsing. This is a

top-down process in which the parser attempts to verify that the syntax of the input

stream is correct as it is read from left to right. A basic operation necessary for this

involves reading characters from the input stream and matching then with terminals from

the grammar that describes the syntax of the input. Our recursive descent parsers will

look ahead one character and advance the input stream reading pointer when proper

matches occur.

Pseudo code
Grammar used:

E→T+E/T

T→F*T/F

F→(E)/num

7. Start the program by declaring the functions expr(), term(), factor() and match()

8. In main, take the first character as input and call expr().

9. Print success for successful completion of parsing, error otherwise.

10. In match() function, match the input stream with the terminals from the grammar.

11. In expr(),

i. call term()

ii. match ‘+’ (according to the grammar)

iii. call expr() if ‘+’ matches

12. in term(),

i. call factor()

ii. match ‘*’ (according to the grammar)

iii. call term() if ‘*’ matches

13. in factor()

i. match token ‘(‘

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 31

ii. call expr() if ‘(‘ matches

iii. match ‘)’ if expr() returns true

iv. else match ‘digit’

v. else return error

Problem Validation
Execution Steps

cc recdes.c

./a.out

Input

i. 2+3

ii. 2++3

Output

1. Success
2 . Error

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 32

Program 8

Problem Definition
C program to find First elements of a grammar.
Problem Description
TocomputeFIRST(X)forallgrammarsymbolsx,applythefollowingrulesuntilnomoreterminal

s can be added to any FIRST set.

1. IfX is terminal, then FIRST(X) is {X}.

2. IfXisnonterminalandX->aαisaproduction,thenaddatoFIRST(X).ifX->€toFIRST(X)

3. If->Y1,Y2,…….Ykisaproduction,thenforallisuchthatallofY1,….Yi-1are nonterminals

and FIRST(Yj) contains € for j=1,2,…… i-1, add every non-€

symbolinFIRST(Y1)toFIRST(x).ifVisinFIRST(Yj)forj=1,2,………k,then add € to

FIRST(X).

Pseudo code
1. Start the program by entering the productions of the grammar and the input symbol.

2. If the input symbol is a terminal, add it to the output.

3. If the input symbol is a non-terminal, then

i. If it is the head symbol of the production, and has € on the RHS then add € to its

output.

ii. Else if it has a terminal as the first symbol on RHS then add that terminal to the

output.

iii. Else if it has a non-terminal as the first symbol on RHS then find FIRST of that

symbol.

Problem Validation
Execution Steps

cc prog.c

./a.out

Input

S->ABc

A->eD

B->b

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 33

D->i

Output

FIRST(S) = {e}

FIRST(A) = {e}

FIRST(B) = {b}

FIRST(D) = {i}

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 34

Program 9

Problem Definition
C program to find Follow elements of a grammar.
Problem Description
To compute FOLLOW(A) for all nonterminals A, apply the following rulesuntil nothing

can be added to any FOLLOW set.

1. Place $ in FOLLOW(S) where S is the start symbol, and $ is the inputright

endmarker.

2. If there is a production A -> aBβ, then everything in FIRST(β) except ԑis in

FOLLOW(B).

3. If there is a production A ->aB, or a production A -> aBβ, where

FIRST(β) contains ԑ, then everything in FOLLOW (A) is in FOLLOW (B) .

Pseudo code
1. Start the program by entering the productions of the grammar and the input symbol.

2. Call follow() of the input.

3. In Follow(),

i. If the input symbol is the start symbol, add # (end marker) to the output.

ii. Search all the productions on the RHS for the input symbol

iii. Wherever the input symbol matches, find the first() of its following string.

iv. If there is no string following the matched input symbol, then add follow of the

head symbol of the production to the output.

4. In First(),

i. If the input symbol is a terminal, add it to the output.

ii. If the input symbol is a non-terminal, then

 If it is the head symbol of the production, and has € on the RHS then add € to

its output.

 Else if it has a terminal as the first symbol on RHS then add that terminal to

the output.

 Else if it has a non-terminal as the first symbol on RHS then find FIRST of

that symbol.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 35

Problem Validation
Execution Steps

cc prog.c

./a.out

Input

S->ABc

A->eD

B->b

D->i

Output

FOLLOW(B) = {c,$}

FOLLOW(e) = {i}

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 36

Program 10

Problem Definition
C program for code generation.
Problem Description
Code generation can be considered as the final phase of compilation. Through post code

generation, optimization process can be applied on the code, but that can be seen as a

part of code generation phase itself. The code generated by the compiler is an object

code of some lower-level programming language, for example, assembly language. We

have seen that the source code written in a higher-level language is transformed into a

lower-level language that results in a lower-level object code, which should have the

following minimum properties:

 It should carry the exact meaning of the source code.

 It should be efficient in terms of CPU usage and memory management.

Pseudo code
1. Start the program by taking a c-statement to be converted as input.

2. Use a switch construct to define various cases for addition, subtraction, multiplication

and division.
3. Using assembly language instructions like LOAD, ADD/SUB/MUL/DIV AND

STORE convert the given C-statement into assembly language code

Problem Validation
Execution Steps

cc prog.c

./a.out

Input

A=B+C

Output

LOAD R0,B

ADD R0,C

STORE A,R0

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 37

Program 11

Problem Definition
C program for code optimization.
Problem Description
Optimization is a program transformation technique, which tries to improve the code by

making it consume less resource (i.e. CPU, Memory) and deliver high speed.In

optimization, high-level general programming constructs are replaced by very efficient

low-level programming codes.

Constant Folding

Expressions with constant operands can be evaluated at compile time, thus improving

run-time performance and reducing code size by avoiding evaluation at compile-time.

In the code fragment below, the expression (3 + 5) can be evaluated at compile time and

replaced with the constant 8.Programmers generally do not write expressions such as (3 +

5) directly, but these expressions are relatively common after macro expansion and other

optimizations.

Pseudo code
1. Start the program by taking two C-statements as input. One with a direct value such

as b=1 and the other a general statement containing ‘b’ on RHS.

2. Traverse the first statement and Store the variable (b)in var1 and its value (1) in var2.

3. Traverse the second statement beyond ‘=’ searching for var1.

4. Replace var1 in second statement by var2.

5. The optimized code will be second statement.

Problem Validation
Execution Steps
cc prog.c
./a.out
Input
B=1
A=B+C
Output
A=1+C

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 38

Program 12

Problem Definition
Code generation for if-statement.
Problem Description
Code generation can be considered as the final phase of compilation. Through post code

generation, optimization process can be applied on the code, but that can be seen as a

part of code generation phase itself. The code generated by the compiler is an object

code of some lower-level programming language, for example, assembly language. We

have seen that the source code written in a higher-level language is transformed into a

lower-level language that results in a lower-level object code, which should have the

following minimum properties:

 It should carry the exact meaning of the source code.

 It should be efficient in terms of CPU usage and memory management.

Pseudo code
1. Start the program by taking 2 c-statements representing if-statement as input.
2. Using assembly language instructions, move the 2 variables in if-condition to the

registers.
3. Compare both the variables using cmp command.

4. If true, execute the second statement and store the result in a new register.

Problem Validation
Execution Steps
cc codegenif.c
./a.out
Input

if(a<b)

a=a+1

Output

Mov r1,a

Mov r2,b

Cmp

Jge nxt

mov r3,a

Add r3,1

store a,r3

Nxt:

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 42

Program 13

Problem Definition
Code generation for while-statement.
Problem Description
Code generation can be considered as the final phase of compilation. Through post code

generation, optimization process can be applied on the code, but that can be seen as a

part of code generation phase itself. The code generated by the compiler is an object

code of some lower-level programming language, for example, assembly language. We

have seen that the source code written in a higher-level language is transformed into a

lower-level language that results in a lower-level object code, which should have the

following minimum properties:

 It should carry the exact meaning of the source code.

 It should be efficient in terms of CPU usage and memory management.

Pseudo code
1. Start the program by taking 2 C-statements representing while loop as input.
2. If the value in the while condition is true jump to a new label begin.
3. Execute the second instruction and store the result.
4. Repeat the code in the label begin until the condition in while is true.
Problem Validation
Execution Steps

cc codegenif.c

./a.out

Input

while(i=1)

x=x+1

Output

Mov r1,i

Jmp begin

xx: mov r2,x

Mov r2,1

Store x,r2

begin: cmp r1,1

Je xx

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 44

Program 14

Problem Definition
Identification of test cases and finding defects in the application using RFT
Problem Description
Black-box testing is a method of software testing that examines the functionality of an

application (e.g. what the software does) without peering into its internal structures or

workings. This method of test can be applied to virtually every level of software

testing: unit, integration, system and acceptance. It typically comprises most if not all

higher level testing, but can also dominate unit testing as well.

Test cases: Test cases are built around specifications and requirements, i.e., what the

application is supposed to do. Test cases are generally derived from external

descriptions of the software, including specifications, requirements and design

parameters. Although the tests used are primarily functional in nature, non-functional

tests may also be used. The test designer selects both valid and invalid inputs and

determines the correct output without any knowledge of the test object's internal

structure.

Pseudo code
1. Start IBM software delivery platform – IBM rational functional tester – Java

scripting.

2. Make a new functional test project

3. Configure the application for testing

4. Generate a test script by starting the recording of the events for placing the order.

5. Stop the recording.

6. Playback the test script generated.

Problem Validation
Input

APPLICATION NAME:CLASS JAVA A

Test Case
ID

Credit Card No. Expiry Date Result
Expected

Result
Observed

Status

1 1234123412341234 12/16 order placed order placed Pass

2 111111111111 12/16 order not
placed

order placed Fail

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 45

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 46

Output

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 47

Program 15

Problem Definition
DataVerification,ImageVerification
Problem Description

Unit testing is a software development process in which the smallest testable parts of

an application, called units, are individually and independently scrutinized for proper

operation. Unit testing is often automated but it can also be done manually.

In this experiment, unit testing is applied to perform data and image

verification.

Same Data/image point is taken from two different versions of the same application

and compared to find any modifications done.

Pseudo code
1. Start IBM software delivery platform – IBM rational functional tester – Java

scripting.

2. Make a new functional test project

3. Configure the application for testing

4. Generate a test script by starting the recording of the events for placing the order.

5. After starting the recording, select the data/image point using fourth option from

the recording window.

6. Stop the recording.

7. Change the application name in the test script to the new version of the

application.

8. Playback the test script to generate the report.

Problem Validation
Input

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 48

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 49

Output

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 50

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 51

Program 16

Problem Definition
DataDrivenActions usingRFT
Problem Description
Functional testing is a quality assurance (QA) process and a type of black-box

testing that bases its test cases on the specifications of the software component under

test. Functions are tested by feeding them input and examining the output, and

internal program structure is rarely considered. Functional testing usually

describes what the system does.
Unit testing is a software development process in which the smallest testable parts of

an application, called units, are individually and independently scrutinized for proper

operation. Unit testing is often automated but it can also be done manually.

In this experiment, we perform functional testingby creating a test data pool. A

datapool can be populated with data from the application. A datapool is a collection of

related data records. A datapool supplies data values to the variables in a test script

during test script playback.

Pseudo code
1. Start IBM software delivery platform – IBM rational functional tester – Java

scripting.

2. Make a new functional test project

3. Configure the application for testing

4. Generate a test script by starting the recording of the events for placing the order.

5. On the Recording toolbar, click Insert Data Driven Commands.

6. The test script recording pauses and the Insert Data Driven Actions page opens.

In the application-under-test, type the initial values that you want to see in the

datapool in the fields that you want to data drive.

7. Use the mouse to drag the hand, the Object Finder too, to the object in the

application that you want to select. Functional Tester outlines the object with a red

border.

8. Release the mouse button.

The Data Drive Actions page opens. In the Data Drive Actions page, under

the DataDriven Commands table, information appears about the objects you

selected.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 52

9. In the data drive actions page (data pool) insert more records.

10. Playback the script by selecting iterate until done option.

Problem Validation
Input

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 53

Output

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 54

Program 17

Problem Definition
Requirements management using RQM.
Problem Description
IBM® Rational Quality Manager™, built on the Jazz platform, is a collaborative,

web-based, quality management solution that offers comprehensive test planning and

test asset management from requirements to defects. This software helps teams share

information seamlessly, use automation to accelerate project schedules and report on

metrics for informed release decisions.

Rational Quality Manager helps quality assurance teams:

 Collaborate—share project information and status updates seamlessly so team

members can synchronize teamwork throughout the lifecycle.

 Automate—reduce labor-intensive activities to accelerate project schedules.

 Govern—understand and report on project metrics to enable accurate, reliable and

timely release decisions.

Pseudo code
1. Start IBM RQM – IBM RQM server (in Mozilla firefox).

2. Create and save requirements from the dashboard on the left side.

3. Create and save test cases from the dashboard on the left side.

4. Add few requirements (leave other requirements as it is) to the test cases created.

Save.

5. Create a test plan from the dashboard and add all the requirements and test cases

to it.

6. Generate report from the dashboard by selecting plan requirements coverage by

test cases (present on the second page of reports).

7. Select the test plan created and run it.

8. A pie Machine is generated in the report which shows the coverage of

requirements by the test cases.

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 55

Problem Validation
Input

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 56

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 57

Output

OOSD AND CC LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT, MJCET 58

Annexure – I

List of programs according to O.U. curriculum

